Difference between revisions of "MTD2 class 8"

esse quam videri
Jump to: navigation, search
(Digital Theory)
 
(23 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
==In Class==
 
==In Class==
  
* Audio Effects Presentations
 
* Intro to digital theory
 
 
* Rendering in Premiere  
 
* Rendering in Premiere  
  
==Digital Theory==
+
{{Template:Digital Theory}}
  
Word of the Day
 
Analog
 
How stuff works - How Analog and Digital Recording Works
 
  
Analog vs. Digital the arguments in a nutshell
+
{{Template:Binary Numbers}}
{|
 
| Analog || Digital Good
 
|-
 
| Infinite dynamic quantization (infinite resolution)  || Quantization error fix - more bit depth/oversampling
 
|-
 
| Good? - The warming effects 'we're used' to from tape compression. ||Good?-'Perfect' reproduction of high frequencies - 'soundz harsh fix - 'using warm-sounding mikes and preamps (tubes)'
 
|-
 
|Bad - Tape noise and generation loss || Good - 'no generation loss'
 
|-
 
|Bad - 'Cheap recordings sound cheap' || Good - 'cheap recordings sound good but digital'
 
|}
 
* 'anything in quotes is what I like to call an opinion
 
  
+
{{Template:Color Depth}}
Other Opinions
 
  
analog winner http://www.segall.com/atr.html
+
{{Template:Binary Math}}
  
analog winner http://www.digido.com/analog_versus_digital.html
+
==Premiere Audio Demo==
 
+
[[Premiere Audio Demo]]
comparison http://www.outersound.com/osu/recording/
 
 
 
ana-dig.html
 
Number Systems
 
{|
 
|Hexadecimal Base 16 ||Decimal Base 10 || Octal Base 8 || Binary Base 2
 
|-
 
|0 || 0 || 0 || 0000
 
|-
 
|1 || 1 || 1 || 0001
 
|-
 
|2 || 2 || 2 || 0010
 
|-
 
|3 || 3 || 3 || 0011
 
|-
 
|4 || 4 || 4 || 0100
 
|-
 
|5 || 5 || 5 || 0101
 
|-
 
|6 || 6 || 6 || 0110
 
|-
 
|7 || 7 || 7 || 0111
 
|-
 
|8 || 8 || 10 || 1000
 
|-
 
|9 || 9 || 11 || 1001
 
|-
 
|A || 10 || 12 || 1010
 
|-
 
|B || 11 || 13 || 1011
 
|-
 
|C || 12 || 14 || 1100
 
|-
 
|D || 13 || 15 || 1101
 
|-
 
|E || 14 || 16 || 1110
 
|-
 
|F || 15 || 17 || 1111
 
|}
 
 
 
==Binary Numbers==
 
 
 
As Humans we use a 10 base numbering system. For machines this numbering system is impractical.
 
 
 
Gottfried Willheml von Leibnitz devised the binary number system in 1679
 
 
 
Converting Binary Numbers
 
 
 
Binary->Decimal
 
    11010<sub>2</sub> = (1 * 2<sub>4</sub>) + (1 * 2<sub>3</sub>) + (0 * 2<sub>2</sub>) + (1 * 2<sub>1</sub>) + (0 * 2<sub>0</sub>) = 16<sub>10</sub> + 8<sub>10</sub> +  0 + 2<sub>10</sub> + 0 = 26<sub>10</sub>
 
 
 
Dividing by two
 
{|
 
|integer || remainder || binary #
 
|-        
 
|26 ||  ||            
 
|-
 
|26/2 || 0 || 0
 
|-
 
|13/2 || 1 ||         1 0
 
|-
 
|6/2 || 0 ||       0 1 0
 
|-
 
|3/2 || 1 ||     1 0 1 0
 
|-
 
|1/2 || 1 ||   1 1 0 1 0
 
|-
 
|0/2 || || that's it kids
 
|}          
 
 
 
for more info see Dr. Dave's Class readings (i believe it's in week 2)Daves text
 
 
 
Base2
 
 
 
Each new bit doubles the number of intervals.
 
{|
 
| 2<sup>0</sup>  || =1
 
|-
 
|2<sup>1</sup> || =2
 
|-
 
| 2<sup>2</sup> || =4
 
|-
 
| 2<sup>3</sup> || =8
 
|-
 
|2<sup>4</sup>  || =16
 
|-
 
|2<sup>5</sup> || =32
 
|-
 
|2<sup>6</sup> || =64
 
|-
 
|2<sup>7</sup> || =128
 
|-
 
|2<sup>8</sup> || =256
 
|-
 
|2<sup>9</sup> || =512
 
|-
 
|2<sup>10</sup> || =1024
 
|-
 
|2 <sup>11</sup>|| =2048
 
|-
 
|2<sup>12</sup> || =4096
 
|-
 
|2<sup>13</sup> || =8192
 
|-
 
|2<sup>14</sup> || =16384
 
|-
 
|2<sup>15</sup> || =32768
 
|-
 
|2<sup>16</sup> || =65536
 
|-
 
|2<sup>20</sup> || =1048576
 
|-
 
|2<sup>24</sup> || =16777216
 
|-
 
|2<sup>32</sup> || = 4,294,967,295
 
|-
 
|2<sup>64</sup> || = 18,446,744,073,709,551,616 = 16 exabytes. That's more than 18 billion billion bytes.
 
|}
 
 
 
{|
 
|Name || Abbr. || Size
 
|Kilo || K || 2^10 = 1,024
 
|-
 
|Mega || M || 2^20 = 1,048,576
 
|-
 
|Giga ||G  || 2^30 = 1,073,741,824
 
|-
 
| Tera || T || 2^40 = 1,099,511,627,776
 
|-
 
| Peta || P || 2^50 = 1,125,899,906,842,624
 
|-
 
| Exa || E ||2^60 = 1,152,921,504,606,846,976
 
|-
 
| Zetta || Z || 2^70 = 1,180,591,620,717,411,303,424
 
|-
 
| Yotta || Y || 2^80 = 1,208,925,819,614,629,174,706,176
 
|}
 
 
 
==Binary Math==
 
 
 
Binary Math
 
http://www.ibiblio.org/obp/electricCircuits/Digital/DIGI_2.html
 
What can one byte (8 bits) store?
 
2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
 
1 1 1 1 1 1 1 1
 
128 64 32 16 8 4 2 1
 
128+64+32+16+8+4+2+1 = 255
 
 
 
What about negative numbers?
 
Signed Magnitude
 
 
 
Use the first bit as the equivalent of a +/- sign.
 
 
 
http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/student-binary.html 510 in 8 bit binary
 
00000101
 
 
 
-510 in 8 bit binary Signed Magnitude
 
10000101
 
(make sure that the circuit knows you are using singed magnitude otherwise this could be interpreted as 113)
 
 
 
 
 
Now what can one byte (8 bits) store?
 
+/- 2^6 2^5 2^4 2^3 2^2 2^1 2^0
 
0 1 1 1 1 1 1 1
 
+ 64 32 16 8 4 2 1
 
64+32+16+8+4+2+1 = 127
 
or
 
+/- 2^6 2^5 2^4 2^3 2^2 2^1 2^0
 
1 1 1 1 1 1 1 1
 
- 64 32 16 8 4 2 1
 
-64+32+16+8+4+2+1 = -127
 
 
 
===One's Compliment===
 
 
 
One's Compliment uses regular binary numbers to represent positive numbers. To make that number negative you just flip all the bits from 1 to 0 or 0 to 1.
 
510 in 8 bit binary
 
00000101
 
 
 
-510 in 8 bit binary One's Compliment
 
11111010
 
  
===Two's Compliment===
+
examples of style in animation
 +
#cut out animation [http://www.vimeo.com/clip:52370]
 +
#Monty Python's Flying Circus [http://www.noolmusic.com/blogs/Youtube_Comedy_Video_-_Monty_Python_-_Charles_Atlas_animation.shtml]
  
Same as One's Compliment bit add one to negative numbers
+
==Flash Tracing Demo==
510 in 8 bit binary
+
How to trace still images in flash
00000101
 
  
-510 in 8 bit binary Two's Compliment
+
[[Tracing in Flash]]
11111011
 
 
 
To figure out the sign of the answer we must check the MSB (most significant bit).If MSB is 0 number is positive, interpret normally If MSB is 1 number is negative
 
 
 
    * complement all bits
 
    * add 1
 
    * interpret as negative number
 
 
 
==Sampling theory==
 
 
 
sampling process
 
 
 
Bit Depth
 
 
 
 
over 24 bit used mainly for internal processing and really high end audio equipment
 
24 bit Professional recording and internal processing
 
16 bit CD quality audio (not so good for processing)
 
8 bit Smaller size used for consumer voice stuff and multimedia
 
 
 
==Sampling Rates==
 
Some Common Sampling Rates
 
{|-
 
|192kHz
 
|Professional recording and new fancy sound cards
 
|-
 
|96kHz
 
|Professional recording (New CD/DVD format)
 
|-
 
|48 kHz
 
|Professional recording (found mainly on DAT recorders used for film)
 
|-
 
|44.1 kHz
 
|CD quality Audio
 
|-
 
|22 kHz
 
|Multimedia/ Games
 
|-
 
|11 kHz
 
|Multimedia/ Games
 
|}
 
 
 
'''File Size per Sampling rate and Bit Depth'''
 
<table>
 
<tr><td>Sample Rate</td><td> Bit Width</td><td>File Size per minute</td>
 
</tr><tr><td>96 kHz</td><td> 24-bit Stereo</td><td> 33.0 MB</td>
 
</tr><tr><td>44.1 kHz</td><td> 16-bit Stereo</td><td> 10.5 MB</td>
 
</tr><tr><td>44.1 kHz</td><td> 16-bit Mono</td><td> 5.3 MB</td>
 
</tr><tr><td>44.1 kHz</td><td> 8-bit Stereo</td><td> 5.3 MB</td>
 
</tr><tr><td>44.1 kHz</td><td> 8-bit Mono</td><td> 2.6 MB</td>
 
</tr><tr><td>22 kHz</td><td> 16-bit Stereo</td><td> 5.3 MB</td>
 
</tr><tr><td>22 kHz</td><td> 16-bit Mono</td><td> 2.6 MB</td>
 
</tr><tr><td>22 kHz</td><td> 8-bit Stereo</td><td> 2.6 MB</td>
 
</tr><tr><td>22 kHz</td><td> 8-bit Mono</td><td> 1.3 MB</td>
 
</tr><tr><td>11 kHz</td><td> 16-bit Stereo</td><td> 2.6 MB</td>
 
</tr><tr><td>11 kHz</td><td> 16-bit Mono</td><td> 1.3 MB</td>
 
</tr><tr><td>11 kHz</td><td> 8-bit Stereo</td><td> 1.3 MB</td>
 
</tr><tr><td>11 kHz</td><td> 8-bit Mono</td><td> 660 KB</td>
 
</tr></table>
 
 
 
  Note : Dropping the Sampling Rate or Bit Depth by half leads to half the file size
 
 
 
'''File formats'''
 
{|-
 
|name ||ext.|| info
 
|-
 
|aiff ||.aif ||audio interchange file format (mac native) supports markers and regions
 
|-
 
|sd2 || .sd2|| sound designer 2 (digidesign native) supports markers and regions
 
|-
 
|wave || .wav  || wave file (Microsoft) many different formats most support markerz and regions
 
|-
 
|au-law  || .au or .aul || au-law file (unix native) supports compression
 
|-
 
|RAM || .ram or .ra || Real audio File supports compression and streaming
 
|-
 
|Mpeg3 || .mp3 || Mpeg layer 3 supports variable compression and streaming (AMP)
 
|-
 
|AAC || .aac || Mpeg2 Advanced Audio Coding AC-3 standard NEW not supported yet http://www.execpc.com/%7Ereal/aac/index.html
 
|-
 
|MIDI || .mid || not and audio format
 
|-
 
|Modular (MOD) || .mod || kinda an audio format (used mainly for games)
 
|-
 
|ASF wmv || .asf .wmv || windows Media and Advanced Streaming Format Microsoft supports variable compression streaming video encryption
 
|}
 
 
 
 
 
'''CD Formats'''
 
* RedBook Audio standard CD audio format
 
* CDROM-XA (eXtended Archetecture) audio and data
 
 
 
 
 
 
 
==Premiere Audio Demo==
 
[[Premiere Audio Demo]]
 
  
  

Latest revision as of 20:48, 25 October 2007

In Class

  • Rendering in Premiere

Digital Theory

Word of the Day Analog How stuff works - How Analog and Digital Recording Works

Analog vs. Digital the arguments in a nutshell

Analog Digital Good
Infinite dynamic quantization (infinite resolution) Quantization error fix - more bit depth/oversampling
Good? - The warming effects 'we're used' to from tape compression. Good?-'Perfect' reproduction of high frequencies - 'soundz harsh fix - 'using warm-sounding mikes and preamps (tubes)'
Bad - Tape noise and generation loss Good - 'no generation loss'
Bad - 'Cheap recordings sound cheap' Good - 'cheap recordings sound good but digital'

* 'anything in quotes is what I like to call an opinion


Other Opinions

analog winner http://www.segall.com/atr.html

analog winner http://www.digido.com/analog_versus_digital.html

comparison http://www.outersound.com/osu/recording/

ana-dig.html Number Systems

Hexadecimal Base 16 Decimal Base 10 Octal Base 8 Binary Base 2
0 0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 0111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111

Binary Numbers

As Humans we use a 10 base numbering system. For machines this numbering system is impractical.

Gottfried Willheml von Leibnitz devised the binary number system in 1679

Converting Binary Numbers

Binary->Decimal

   110102 = (1 * 24) + (1 * 23) + (0 * 22) + (1 * 21) + (0 * 20) = 1610 + 810 +  0 + 210 + 0 = 2610

Dividing by two

integer remainder binary #
26
26/2 0 0
13/2 1 1 0
6/2 0 0 1 0
3/2 1 1 0 1 0
1/2 1 1 1 0 1 0
0/2 that's it kids

for more info see Dr. Dave's Class readings (i believe it's in week 2)Daves text

Base2


Each new bit doubles the number of intervals.


20 =1 monochrome, often black and white
21 =2
22 =4
23 =8 Most early color Unix workstations, VGA at low resolution, Super VGA, AGA http://en.wikipedia.org/wiki/Web_colors#Web-safe_colors
24 =16
25 =32
26 =64
27 =128
28 =256
29 =512
210 =1024
2 11 =2048
212 =4096
213 =8192
214 =16384
215 =32768
216 =65536 "thousands of colors" on Macintosh
220 =1048576
224 =16777216 Truecolor or "millions of colors" on Macintosh systems
232 = 4,294,967,295 refers to 24-bit color (Truecolor) with an additional 8 bits
264 = 18,446,744,073,709,551,616 = 16 exabytes. That's more than 18 billion billion bytes.

Large Bit Names

Name Abbr. Size
Kilo K 2^10 = 1,024
Mega M 2^20 = 1,048,576
Giga G 2^30 = 1,073,741,824
Tera T 2^40 = 1,099,511,627,776
Peta P 2^50 = 1,125,899,906,842,624
Exa E 2^60 = 1,152,921,504,606,846,976
Zetta Z 2^70 = 1,180,591,620,717,411,303,424
Yotta Y 2^80 = 1,208,925,819,614,629,174,706,176


Color Depth

1 Bit
2 Bit
4 Bit
8 Bit
16 Bit
32 Bit


Bit Depth Color Examples

http://en.wikipedia.org/wiki/Color_depth

Premiere Audio Demo

Premiere Audio Demo

examples of style in animation

  1. cut out animation [1]
  2. Monty Python's Flying Circus [2]

Flash Tracing Demo

How to trace still images in flash

Tracing in Flash


Homework

  1. Read Chapter 3 in Sound Design for Interactive Media
  2. Render and Post and link a rought cut of your Story Boards with Audio